South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 3 (2021), pp. 189-208

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

COUPLED FIXED POINT THEOREMS OF WEAKLY C-CONTRACTION WITH MIXED MONOTONE PROPERTY IN ORDERED MODULAR METRIC SPACES

Shishir Jain and Yogita Sharma*

Department of Mathematics, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Gram Baroli, Sanwer Road, Indore - 453111, (M. P.), INDIA

E-mail: jainshishir11@rediffmail.com

*Department of Computer Science, Shri Vaishnav Institute of Management, Gumashta Nagar, Indore - 452009, (M. P.), INDIA

E-mail: yogitasharma 2006@gmail.com

(Received: Nov. 30, 2020 Accepted: Nov. 02, 2021 Published: Dec. 30, 2021)

Abstract: In this paper, we introduce the notion of weakly *C*-contraction using altering distance function in the setting of modular metric space equipped with partially ordered relation and proved some coupled fixed point results. The results are supported by examples.

Keywords and Phrases: Coupled fixed point, G-monotone mapping, weakly C-contraction, modular metric space, partially ordered set.

2020 Mathematics Subject Classification: 47H09, 47H10, 46A80.

1. Introduction

The Banach contraction principle [4] was introduced by Banach in his thesis in 1922. It is a very popular tool for solving the existing problems in many branches of mathematical analysis. Due to it's applications in mathematics, the Banach contraction principle has been generalized in various settings. In particular, Chatterjea [6] introduced the concept of C-contraction. In 1997, Alber and

Guerre-Delabriere [1] has given a remarkable generalization of Banach contraction by introducing the notion of weakly ϕ -contraction in the context of Hilbert spaces. Choudhury [12] generalized both the mentioned concepts as weakly C-contractive mapping and proved some fixed point results, these results were extended by Harjani et al. [15] to partially ordered metric spaces. Bhaskar and Lakshmikantham [5] introduced the notion of the mixed monotone property and the coupled fixed point of a mapping $F: X \times X \to X$ in partially ordered metric spaces. Since then many authors established coupled fixed point results in various abstract spaces (see in [3, 13, 14, 23, 27]). Lakshmikantham and Ćirić [18] introduced the concept of a mixed g-monotone mapping and proved coupled coincidence and coupled common fixed point theorems for nonlinear contractive mappings in partially ordered metric space, which generalize the main results of Bhaskar and Lakshmikantham [5]. After that many authors generalized the above concept in partially ordered metric spaces (see in [2, 25, 30]). Shatanawi [28] generalized the results of Harjani et al. [15] and Bhaskar and Lakshmikantham [5]. In 2012, Eshaghi Gordii et al. [13] introduced the concept of a mixed weakly monotone pair of mappings and proved some coupled common fixed point theorems, which generalize the results of Bhaskar and Lashmikantham [5] and Kadelburg et al. [16]. One of the useful generalization of metric spaces is modular metric spaces, which was primarily initiated by Nakano [24]. In 2008, Chistyakov [8] introduced the notion of modular metric spaces generated by F-modular (also see in [9, 10]) and using the properties of modular spaces, developed the theory of this space for arbitrary non-empty set in [11]. Author explained that metric modular is a generalized form of metric function. A metric on a set represents non-negative finite distances between any two points of a set; a modular on a set attributes a nonnegative (possible, infinite valued) "fields of velocities": to each 'time $\lambda > 0$ ', here the distance function d(x,y)has been replaced by the average velocity $\omega_{\lambda}(x,y)$ for each $\lambda > 0$. In modular metric space, modular convergence, modular limit and modular completeness are "weaker" than the corresponding metric spaces, these characteristics of this space enhance the applicabilities of abstract spaces in many more research areas. In recent years, in many cases, specially in applications to operators, approximation fixed point results and modular type conditions are much more natural because modular type assumptions can be more easily verified than their metric or norm counterparts. In this sequel many mathematicians have done remarkable work on modular metric spaces (see in [20, 21, 22, 24, 26]).

In this paper we introduce the notion of weakly C-contraction using altering distance function in the setting of modular metric space equipped with partially ordered relation and proved some coupled fixed point results. Our results generalize

the results of Bhaskar and Lakshmikantham [5], Hajani et al. [15] and Shatanawi [29].

2. Preliminaries

Here, some definitions and results related to our work are discussed. Chatterjea [6] introduced the concept of C-contraction.

Definition 2.1. [6] A mapping $F: X \to X$, where (X, d) is a metric space is said to be a C-contraction if there exists $k \in [0, \frac{1}{2})$ such that, the following inequality holds:

$$d(Fx, Fy) \le k(d(x, Fy) + d(y, Fx)),$$

for all $x, y \in X$.

In 1997, Alber and Guerre-Delabriere [1] introduced the notion of weakly ϕ -contraction in the context of Hilbert spaces.

Definition 2.2. [1] A mapping $F: X \to X$, on a metric space X is called weakly ϕ -contractive, if there exists a continuous non-decreasing function $\phi: [0, \infty) \to [0, \infty)$ with $\phi(t) = 0$ if and only if t = 0, such that

$$d(Fx, Fy) \le d(x, y) - \phi(d(x, y))$$

for all $x, y \in X$.

Choudhury [12] defined a new concept of contractive mapping as a generalization of both the mentioned concepts called weakly C-contractive mapping.

Definition 2.3. [12] A mapping $F: X \to X$, where (X, d) is a metric space, is said to be weakly C-contractive if the following inequality holds:

$$d(Fx, Fy) \le \frac{1}{2}(d(x, Fy) + d(y, Fx)) - \phi(d(x, Fy), d(y, Fx)),$$

where $\phi:[0,\infty)\times[0,\infty)\to[0,\infty)$ is a continuous function such that $\phi(x,y)=0$ if and only if, x=y=0.

Following result has been proved in [12].

Theorem 2.4. [12] Let (X, d) be a complete metric space and F be a weakly C-contractive mapping then F has a unique fixed point x^* in X.

Bhaskar and Lakshmikantham [5] introduced the notion of mixed monotone property and coupled fixed points and proved the results for continuous and non-continuous mappings in partially ordered metric spaces.

Definition 2.5. [5] Let (X, \preceq) be a partially ordered set and $F: X \times X \to X$ be a mapping, then we say that F has the mixed monotone property if F(x,y) is

monotone non-decreasing in x and is monotone non-increasing in y that is, for any $x, y \in X$

$$x_1, x_2 \in X, x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y)$$

and

$$y_1, y_2 \in X, y_1 \leq y_2 \Rightarrow F(x, y_1) \succeq F(x, y_2)$$

Definition 2.6. [5] An element $(x,y) \in X \times X$ is called a coupled fixed point of a mapping $F: X \times X \to X$ if F(x,y) = x and F(y,x) = y.

The following results were also established in [5].

Theorem 2.7. [5] Let (X, \preceq) be a partially ordered set and $F: X \times X \to X$ be a continuous mapping having the mixed monotone property on X. Assume there exists $k \in [0,1)$ such that

$$d(F(x,y),F(u,v)) \leq \frac{k}{2}(d(x,u)+d(y,v))$$
 for all $x \succeq u, y \leq v$.

If there exists $(x_0, y_0) \in X \times X$ such that $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$, then F has a coupled fixed point.

The above result is still valid for a mapping F not necessarily continuous if the continuity condition is replaced with an alternative condition discussed in the following theorem.

Theorem 2.8. [5] Let (X, \leq, d) be a partially ordered complete metric space and $F: X \times X \to X$ be a mapping having the mixed monotone property on X. Assume that X has the following properties.

- (i) If $\{x_n\}$ is a non-decreasing sequence in X which converges to x, then $x_n \leq x$ for all $n \in \mathbb{N}$ and
- (ii) If $\{y_n\}$ is a non-increasing sequence in X which converges to y, then $y_n \succeq y$ for all $n \in \mathbb{N}$.

Suppose that there exists $k \in [0,1)$ such that

$$d(F(x,y),F(u,v)) \le \frac{k}{2}(d(x,u)+d(y,v))$$
 for all $x \succeq u, y \preceq v$.

If there exists $(x_0, y_0) \in X \times X$ such that $x_0 \leq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$, then F has a coupled fixed point.

Nakano [24] introduced the following concept.

Definition 2.9. [24] Let X be a linear space on \mathbb{R} . A functional $\rho: X \to [0, \infty]$ is called a modular on X if the following conditions hold:

$$(A_1) \rho(0) = 0;$$

(A₂) If
$$x \in X$$
 and $\rho(\alpha x) = 0$ for all numbers $\alpha > 0$, then $x = 0$;

$$(A_3)$$
 $\rho(-x) = \rho(x)$ for all $x \in X$;

$$(A_4)$$
 $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$ for all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$ and $x, y \in X$.

Chistyakov in [11], introduced the notion of modular metric spaces such as:

Definition 2.10. [11] Let X be a non empty set. A function $\omega : (0, \infty) \times X \times X \to [0, \infty)$ is said to be a metric modular on X, if for all $x, y, z \in X$ the following conditions hold:

(i)
$$\omega_{\lambda}(x,y) = 0$$
 for all $\lambda > 0$ if and only if $x = y$;

(ii)
$$\omega_{\lambda}(x,y) = \omega_{\lambda}(y,x)$$
 for all $\lambda > 0$;

(iii)
$$\omega_{\lambda+\mu}(x,y) \leq \omega_{\lambda}(x,z) + \omega_{\mu}(z,y)$$
 for all $\lambda, \mu > 0$.

If we replace (i) by $\omega_{\lambda}(x,x) = 0$ for all $\lambda > 0, x \in X$, then ω is said to be a pseudomodular (metric) on X.

A modular ω on X is said to be regular if the following weaker version of (i) is satisfied:

x = y if and only if $\omega_{\lambda}(x, y) = 0$ for some $\lambda > 0$. Finally, ω is said to be convex if for $\lambda, \mu > 0$ such that $0 < \mu < \lambda$, and for all $x, y, z \in X$, following inequality holds:

$$\omega_{\lambda}(x,y) \leq \omega_{\lambda-\mu}(x,x) + \omega_{\mu}(x,y) = \omega_{\mu}(x,y).$$

An important property of the (metric) psedomodular on set X is that the mapping $\lambda \mapsto \omega_{\lambda}(x, y)$ is non-increasing for all $x, y \in X$.

Definition 2.11. [11] Let ω be a psedomodular on X, then for a fixed $x_0 \in X$, the two sets

$$X_{\omega} = X_{\omega}(x_0) = \{x \in X : \omega_{\lambda}(x, x_0) \to 0 \text{ as } \lambda \to \infty\},$$

$$X_{\omega}^* = X_{\omega}^*(x_0) = \{(x \in X : \exists \lambda = \lambda(x) > 0) \text{ such that } \omega_{\lambda}(x, x_0) < \infty\}$$

are said to be modular metric spaces (around x_0). Also, if ω is a modular on X, then the modular space X_{ω} can be equipped with a (nontrivial) metric d_{ω} , generated by ω and given by

$$d_{\omega}(x,y) = \inf\{\lambda > 0 : \omega_{\lambda}(x,y) \le \lambda\}, \quad x,y \in X_{\omega}.$$

If ω is a convex modular on X, then the two modular spaces coincide, $X_{\omega} = X_{\omega}^*$, and this common set can be endowed with a metric d_{ω} given by

$$d_{\omega}^*(x,y) = \inf\{\lambda > 0 : \omega_{\lambda}(x,y) \le 1\}, \quad x,y \in X_{\omega}^*.$$

Even if ω is a nonconvex modular on X, then $d_{\omega}^*(x,x)=0$ and $d_{\omega}(x,y)=d_{\omega}(y,x)$.

Definition 2.12. [11] Let X_{ω} be a modular metric space and $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in X_{ω} .

- (i) The sequence $\{x_n\}_{n\in\mathbb{N}}$ in X_{ω} is called modular convergent to an element $x \in X_{\omega}$ if $\omega_{\lambda}(x_n, x) \to 0$ as $n \to \infty$ for all $\lambda > 0$, and any such element x will be called a modular limit of the sequence $\{x_n\}$.
- (ii) The sequence $\{x_n\}_{n\in\mathbb{N}}\subset X_{\omega}$ is called modular Cauchy sequence (ω -Cauchy) if there exists a number $\lambda=\lambda(\{x_n\})>0$ such that $\omega_{\lambda}(x_n,x_m)\to 0$ as $n,m\to\infty$, i.e., for all $\epsilon>0$, there exists $n_0(\epsilon)\in\mathbb{N}$ such that, for all $n,m\geq n_0(\epsilon),\omega_{\lambda}(x_n,x_m)\leq \epsilon$.
- (iii) A modular space X_{ω} is called modular complete if every modular Cauchy sequence $\{x_n\}$ in X_{ω} is modular convergent in the following sence: if $\{x_n\} \subset X_{\omega}$ and there exists a $\lambda = \lambda(\{x_n\}) > 0$ such that $\lim_{n,m\to\infty} \omega_{\lambda}(x_n,x_m) = 0$, then there exists an $x \in X_{\omega}$ such that $\lim_{n\to\infty} \omega_{\lambda}(x_n,x) = 0$.

Mongkolkeha et al. [19] introduced the contractive condition in modular metric spaces.

Definition 2.13. [19] Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω and $F: X_{\omega} \to X_{\omega}$ be an arbitrary mapping. A mapping F is called contractive if for each $x, y \in X_{\omega}$ and for all $\lambda > 0$ there exists $0 \le k < 1$ such that

$$\omega_{\lambda}(Fx, Fy) \le k\omega_{\lambda}(x, y).$$
 (1)

The following result was also established in [19].

Theorem 2.14. [19] Let ω be a metric modular on X and X_{ω} be a complete modular metric space induced by ω and $F: X_{\omega} \to X_{\omega}$ if

$$\omega_{\lambda}(Fx, Fy) \le k(\omega_{2\lambda}(x, Fx) + \omega_{2\lambda}(y, Fy)) \tag{2}$$

for all $x, y \in X_{\omega}$ and for all $\lambda > 0$, where $k \in [0, \frac{1}{2})$, then F has a unique fixed point in X_{ω} . Moreover, for any $x \in X_{\omega}$, iterative sequence $\{T^n x\}$ converges to a fixed point.

Zhao et al. [31] proved the result of Mongkolkeha et al. [19] for C-contractive mapping.

Theorem 2.15. [31] Let ω be a metric modular on X, X_{ω} be a ω -complete modular metric space induced by ω and $F: X_{\omega} \to X_{\omega}$. If

$$\omega_{\lambda}(Fx, Fy) \le k (\omega_{2\lambda}(x, Fy) + \omega_{2\lambda}(y, Fx)),$$

for all $x, y \in X_{\omega}$ and for all $\lambda > 0$, where $k \in [0, \frac{1}{2})$, then F has a unique fixed point in X_{ω} .

Zhao et al. [31] also introduced the notion of weakly C-contraction in modular metric space.

Definition 2.16. [31] Let ω be a metric modular on X, X_{ω} be a modular metric space induced by ω and $F: X_{\omega} \to X_{\omega}$ is said to be a weakly C-contraction in X_{ω} , if for all $x, y \in X_{\omega}$ and for all $\lambda > 0$, the following inequality holds:

$$\omega_{\lambda}(Fx, Fy) \le \frac{1}{2} \left(\omega_{2\lambda}(x, Fy) + \omega_{2\lambda}(y, Fx) \right) - \phi(\omega_{\lambda}(x, Fy), \omega_{\lambda}(y, Fx)),$$
 (3)

where $\phi: [0, \infty) \times [0, \infty) \to [0, \infty)$ is a continuous mapping such that $\phi(x, y) = 0$ if and only if x = y = 0.

Authors also proved the following theorem.

Theorem 2.17. [31] Let ω be a metric modular on X, X_{ω} be a ω -complete modular metric space induced by ω . Let $F: X_{\omega} \to X_{\omega}$ be a weakly C-contraction in X_{ω} such that F is continuous and non-decreasing, then F has a unique fixed point.

Khan et al. [17] introduced the concept of altering distance function as follows:

Definition 2.18. [17] The function $\psi: [0, \infty) \to [0, \infty)$ is called an altering distance function, if the following properties are satisfied.

- (i) ψ is continuous and monotonically non-decreasing.
- (ii) $\psi(t) = 0$ if and only if t = 0.

Shatanawi [29] proved some fixed point and coupled fixed point theorems in partially ordered metric space for C-contractive mapping F using altering distance function and examined the validity of results without the continuity of function F.

The aim of this paper is to establish some coupled fixed point theorems for non-linear weakly C-contractive type mapping in partially ordered modular metric spaces.

3. Main Results

Here we define the weakly C-contractive mapping using altering distance function in modular metric space.

Definition 3.1. Let ω be a metric modular on X, X_{ω} be a modular metric space induced by ω and $F: X_{\omega} \times X_{\omega} \to X_{\omega}$ is called weakly \mathcal{C} -contractive in X_{ω} , if for all $x, y \in X_{\omega}$ and for all $\lambda > 0$, the following inequality holds:

$$\psi(\omega_{\lambda}(F(x,y),F(u,v))) \le \psi(\frac{1}{2}(\omega_{2\lambda}(x,u) + \omega_{2\lambda}(y,v))) - \phi(\omega_{\lambda}(x,u),\omega_{\lambda}(y,v)). \tag{4}$$

where $\phi: [0,\infty) \times [0,\infty) \to [0,\infty)$ is a continuous function such that $\phi(t,s) = 0$ if and only if t = s = 0.

Remark 3.2. Every weakly C-contraction with altering distance function is a C-contraction but inverse is not true. The following example justify that if a function is not weakly C-contraction, can be converted into weakly C-contraction by using altering distance function.

Example 3.3. Let $X_{\omega} = \mathbb{R}$ where " \preceq " is a usual ordered relation. Then (X_{ω}, \preceq) is a partially ordered set with the natural ordering of real numbers. Let $\omega_{\lambda} \colon (0, \infty) \times X_{\omega} \times X_{\omega} \to [0, \infty)$ be defined by $\omega_{\lambda}(x, y) = \frac{|x-y|}{\lambda}$, for $x, y \in X$ and $\lambda > 0$. Then $(X_{\omega}, \omega_{\lambda}, \preceq)$ is a complete partially ordered modular metric space. We define $F \colon X_{\omega} \times X_{\omega} \to X_{\omega}$ such that

$$F(x,y) = \begin{cases} \frac{x-y}{4} & \text{; if } x \ge y\\ 0 & \text{; if } x < y \end{cases}$$

Then F is continuous and has mixed monotone property. Define $\phi: [0, \infty) \times [0, \infty) \to [0, \infty)$ such that $\phi(x, y) = \frac{(x+y)^2}{16}$ and $k \in (0, \frac{1}{2})$. Now, we observe that

$$\omega_{\lambda}(F(x,y),F(u,v)) = \omega_{\lambda}\left(\frac{x-y}{4},\frac{u-v}{4}\right)$$

$$= \frac{1}{4\lambda}\left(\left|\frac{x-y}{4} - \frac{u-v}{4}\right|\right)$$

$$\leq \frac{1}{4\lambda}\left(\left|x-u\right| + \left|y-v\right|\right)$$

$$\neq \frac{1}{2}(\omega_{2\lambda}(x,u) + \omega_{2\lambda}(y,v)) - \phi(\omega_{\lambda}(x,u),\omega_{\lambda}(y,v)).$$

So T is not a weakly C-contractive mapping. Further, we defined $\psi:[0,\infty)\to [0,\infty)$ such that $\psi(t)=t^2$ and $\phi:[0,\infty)\times[0,\infty)\to [0,\infty)$ such that $\phi(x,y)=\frac{(x+y)^2}{16}$

and prove that F is weakly C-contractive. Without loss of generality, assume that $x \succeq u$ and $y \preceq v$. Then, we have

$$\psi(\omega_{\lambda}(F(x,y),F(u,v))) = \psi(\omega_{\lambda}(\frac{x-y}{4},\frac{u-v}{4}))
= (|\frac{x-y-(u-v)}{4\lambda}|)^{2}
= (|\frac{x-u-(y-v)}{4\lambda}|)^{2}
\leq \frac{1}{4}(\frac{[|x-u|+|y-v|]}{2\lambda})^{2}
= \frac{1}{8}(\frac{[|x-u|+|y-v|]}{2\lambda})^{2} - \frac{1}{16}(\frac{[|x-u|+|y-v|]}{\lambda})^{2}
= \psi(\frac{1}{2}(\omega_{2\lambda}(x,u) + \omega_{2\lambda}(y,v))) - \phi(\omega_{\lambda}(x,u),\omega_{\lambda}(y,v)).$$

Therefore, it is clear that T is a weakly C-contractive mapping with altering distance function.

Theorem 3.4. Let (X_{ω}, \preceq) be a partially ordered set and ω be a metric modular on X_{ω} such that $(X_{\omega}, \omega_{\lambda})$ is a complete modular metric space. Let $F: X_{\omega} \times X_{\omega} \to X_{\omega}$ be a continuous mapping having the mixed monotone property on X_{ω} . Assume that for $x, y, u, v \in X_{\omega}$ with $x \succeq u$ and $y \preceq v$, we have

$$\psi(\omega_{\lambda}(F(x,y),F(u,v))) \le \psi(\frac{1}{2}(\omega_{2\lambda}(x,u) + \omega_{2\lambda}(y,v))) - \phi(\omega_{\lambda}(x,u),\omega_{\lambda}(y,v)), \quad (5)$$

where

- (i) $\psi: [0,\infty) \to [0,\infty)$ is an altering distance function,
- (ii) $\phi: [0,\infty) \times [0,\infty) \to [0,\infty)$ is a continuous function with $\phi(t,s) = 0$ if and only if t = s = 0. If there exists $(x_0, y_0) \in X_\omega \times X_\omega$ such that $x_0 \preceq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$, then F has a coupled fixed point.

Proof. Let $x_0, y_0 \in X_\omega$ such that $F(x_0, y_0) = x_0$ and $F(y_0, x_0) = y_0$, then there is nothing to prove. Suppose that $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$ and let $x_1 = F(x_0, y_0)$ and $y_1 = F(y_0, x_0)$, then $x_0 \leq x_1$ and $y_0 \geq y_1$. Again let $x_2 = F(x_1, y_1)$ and $y_2 = F(y_1, x_1)$. We denote

$$F^{2}(x_{0}, y_{0}) = F(F(x_{0}, y_{0}), F(y_{0}, x_{0})) = F(x_{1}, y_{1}) = x_{2}$$

198

and

$$F^{2}(y_{0}, x_{0}) = F(F(y_{0}, x_{0}), F(x_{0}, y_{0})) = F(y_{1}, x_{1}) = y_{2},$$

with these notation due to mixed monotone property of F, we have

$$x_2 = F^2(x_0, y_0) = F(x_1, y_1) \succeq F(x_0, y_0) = x_1$$

and

$$y_2 = F^2(y_0, x_0) = F(y_1, x_1) \le F(y_0, x_0) = y_1.$$

Further for $n = 1, 2, \cdots$ we get

$$x_{n+1} = F^{n+1}(x_0, y_0) = F(F^n(x_0, y_0), F^n(y_0, x_0)) = F(x_n, y_n)$$

and

$$y_{n+1} = F^{n+1}(y_0, x_0) = F(F^n(y_0, x_0), F^n(x_0, y_0)) = F(y_n, x_n).$$

On continuing this way, we construct two sequences $\{x_n\}$ and $\{y_n\}$ in X_{ω} such that $x_{n+1} = F(x_n, y_n), y_{n+1} = F(x_n, y_n)$ for all $n \in \mathbb{N}$. Also, we have

$$x_0 \leq x_1 \leq x_2 \leq \cdots$$
 and $y_0 \succeq y_1 \succeq y_2 \succeq \cdots$,

for all $n \in \mathbb{N}$. Now,

$$\psi(\omega_{\lambda}(x_{n+1}, x_{n+2})) = \psi(\omega_{\lambda}(F(x_n, y_n)), F(x_{n+1}, y_{n+1}))
\leq \psi(\frac{1}{2}(\omega_{2\lambda}(x_n, x_{n+1}) + \omega_{2\lambda}(y_n, y_{n+1})))
-\phi(\omega_{\lambda}(x_n, x_{n+1}), \omega_{\lambda}(y_n, y_{n+1}))
\leq \psi(\max(\omega_{2\lambda}(x_n, x_{n+1}), \omega_{2\lambda}(y_n, y_{n+1})))
-\phi(\omega_{\lambda}(x_n, x_{n+1}), \omega_{\lambda}(y_n, y_{n+1}).$$
(6)

Similarly, we have

$$\psi(\omega_{\lambda}(y_{n+1}, y_{n+2})) \leq \psi(\max(\omega_{2\lambda}(x_n, x_{n+1}), \omega_{2\lambda}(y_n, y_{n+1})))
-\phi(\omega_{\lambda}(y_n, y_{n+1}), \omega_{\lambda}(x_n, x_{n+1})).$$
(7)

Since ψ is a non-decreasing function, by (6) and (7), we have

$$\psi(\max(\omega_{2\lambda}(x_{n}, x_{n+1}), \omega_{2\lambda}(y_{n}, y_{n+1}))) = \max(\psi(\omega_{2\lambda}(x_{n}, x_{n+1}), \psi\omega_{2\lambda}(y_{n}, y_{n+1})))
\leq \psi(\max(\omega_{2\lambda}(x_{n}, x_{n+1}), \omega_{2\lambda}(y_{n}, y_{n+1}))
- \min(\phi(\omega_{\lambda}(x_{n}, x_{n+1}), \omega_{\lambda}(y_{n}, y_{n+1}), \phi(\omega_{\lambda}(y_{n}, y_{n+1}), \omega_{\lambda}(x_{n}, x_{n+1})))
\leq \psi(\max(\omega_{\lambda}(x_{n}, x_{n}), \omega_{\lambda}(x_{n}, x_{n+1})), (\omega_{\lambda}(y_{n}, y_{n}), \omega_{\lambda}(y_{n}, y_{n+1}))
- \min(\phi(\omega_{\lambda}(x_{n}, x_{n+1}), \omega_{\lambda}(y_{n}, y_{n+1}), \phi(\omega_{\lambda}(y_{n}, y_{n+1}), \omega_{\lambda}(x_{n}, x_{n+1}))),
\phi(\omega_{\lambda}(y_{n}, y_{n+1}), \omega_{\lambda}(x_{n}, x_{n+1})).
= \psi(\max(\omega_{\lambda}(x_{n}, x_{n+1}), \omega_{\lambda}(y_{n}, y_{n+1}))
- \min(\phi(\omega_{\lambda}(x_{n}, x_{n+1}), \omega_{\lambda}(y_{n}, y_{n+1}), \phi(\omega_{\lambda}(y_{n}, y_{n+1}), \omega_{\lambda}(x_{n}, x_{n+1}))).$$
(8)

Since $\phi(x,y) \geq 0$ for all $x,y \in X_{\omega}$ and ψ is a non-decreasing function, we conclude that

 $\psi(\max(\omega_{\lambda}(x_{n+1},x_{n+2}),\omega_{\lambda}(y_{n+1},y_{n+2}))$ is a non-decreasing sequence. Thus there is $r \geq 0$ such that

$$\lim_{n\to\infty} \max(\omega_{\lambda}(x_{n+1},x_{n+2}),\omega_{\lambda}(y_{n+1},y_{n+2})) = r.$$

Letting $n \to \infty$ in (8), we get that

$$\psi(r) = \psi(r) - \lim_{n \to \infty} \min(\phi(\omega_{\lambda}(x_n, x_{n+1}), \omega_{\lambda}(y_n, y_{n+1}))). \tag{9}$$

Thus, we have

$$\lim_{n\to\infty} \min(\phi(\omega_{\lambda}(x_n, x_{n+1}), \omega_{\lambda}(y_n, y_{n+1}))) = 0$$

or

$$\lim_{n\to\infty} \min(\phi(\omega_{\lambda}(y_n,y_{n+1}),\omega_{\lambda}(x_n,x_{n+1}))) = 0.$$

In both the cases, we get

$$\lim_{n\to\infty} \phi(\omega_{\lambda}(x_n, x_{n+1})) = 0$$
 and $\lim_{n\to\infty} \phi(\omega_{\lambda}(y_n, y_{n+1})) = 0$.

Hence r=0 for each $\lambda>0$ and for all $n\in\mathbb{N}$. Now, we show that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in X_{ω} . Since, $\lim_{n\to\infty}\phi(\omega_{\lambda}(x_n,x_{n+1}))=0$. So, for each $\lambda>0$ and for each $\epsilon>0$ there exists $n_0\in\mathbb{N}$ such that $\omega_{\lambda}(x_n,x_{n+1})<\epsilon$, for each $n\in\mathbb{N}$ with $n\geq n_0$.

Without loss of generality, suppose $m, n \in \mathbb{N}$ and $m \geq n$ then $\frac{\lambda}{m-n} > 0$ and for

above mentioned ϵ there exists $n_{\frac{\lambda}{m-n}} \in \mathbb{N}$ such that $\omega_{\frac{\lambda}{m-n}}(x_n, x_{n+1}) < \frac{\epsilon}{m-n}$ for all $n \geq n_{\frac{\lambda}{m-n}}$. Now we have

$$\omega_{\lambda}(x_{n}, x_{m}) \leq \omega_{\frac{\lambda}{m-n}}(x_{n}, x_{n+1}) + \omega_{\frac{\lambda}{m-n}}(x_{n+1}, x_{n+2}) + \dots + \omega_{\frac{\lambda}{m-n}}(x_{m-1}, x_{m})$$

$$< \frac{\epsilon}{m-n} + \frac{\epsilon}{m-n} + \dots + \frac{\epsilon}{m-n} = \epsilon, \tag{10}$$

for all $m, n \geq n_{\underline{\hspace{1em}}} \in \mathbb{N}$. This implies $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence.

Since X_{ω} is complete, therefore there exist $x, y \in X_{\omega}$ such that $x_n \to x$ and $y_n \to y$. Since F is continuous, therefore $x_{n+1} = F(x_n, y_n) \to F(x, y)$ and $y_{n+1} = F(y_n, x_n) \to F(y, x)$.

By the uniqueness of limit, we conclude that x = F(x, y) and y = F(y, x). Thus (x, y) is a coupled fixed point of F.

Example 3.5. Let F, ψ and ϕ be given as in Example 3.3. Here, we observe that for $x_0 = -1$ and $y_0 = 1$ in X_{ω} , $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$ are satisfied. These conditions are also satisfied for the values, $x_0 = 0$ and $y_0 = 0$.

So, by Theorem 3.4 we obtain that F has two coupled fixed points (-1,1) and (0,0).

Example 3.6. Let $X_{\omega} = [0,1] \subset \mathbb{R}$ and (X_{ω}, \preceq) be a partially ordered set. Let $\omega_{\lambda} \colon (0,\infty) \times X_{\omega} \times X_{\omega} \to [0,\infty]$ be defined by $\omega_{\lambda}(x,y) = \frac{|x-y|}{\lambda}$ for $x,y \in X$ and $\lambda > 0$. Then $(X_{\omega}, \omega_{\lambda}, \preceq)$ is a complete partially ordered modular metric space. We define $F \colon X_{\omega} \times X_{\omega} \to X_{\omega}$ such that

$$F(x,y) = \begin{cases} \frac{x^2}{9} & \text{; if } x \ge y\\ 0 & \text{; if } x < y. \end{cases}$$

Obviously, F is continuous and has mixed monotone property. Define $\psi:[0,\infty)\to [0,\infty)$ such that $\psi(t)=t^2$ and $\phi:[0,\infty)\times[0,\infty)\to [0,\infty)$ such that $\phi(t,s)=\min(t,s)$. Now, we consider the following cases:

Case I. If x = y = u = v = 0, then clearly F satisfies all the conditions of Theorem (3.4), and $x_0 = 0 \leq F(0,0)$, $y_0 = 0 \geq F(0,0)$.

Case II. If x = 1, y = 0, u = 0, v = 0, then

$$\psi(\omega_{\lambda}(F(1,0),F(0,0))) = \psi(\omega_{\lambda}(\frac{1}{9},0)) = \psi(\frac{1}{9\lambda}) = \frac{1}{81\lambda^{2}}.$$

$$\psi(\frac{1}{2}(\omega_{2\lambda}(1,0) + \omega_{2\lambda}(0,0))) - \phi(\omega_{\lambda}(1,0),\omega_{\lambda}(0,0)) = \psi(\frac{1}{2}(\frac{1}{2\lambda})) - \phi(\frac{1}{\lambda},0)$$

$$= \psi(\frac{1}{4\lambda}) = \frac{1}{16\lambda^{2}},$$

In this case also all the conditions of Theorem (3.4) satisfy such that $x_0 = 0 \leq F(0,1)$, $y_0 = 1 \geq F(1,0)$.

Case III. If x = 1, y = 0, u = 0, v = 1, then

$$\psi(\omega_{\lambda}(F(1,0),F(0,1))) = \psi(\omega_{\lambda}(\frac{1}{9},0)) = \psi(\frac{1}{9\lambda}) = \frac{1}{81\lambda^{2}}$$

$$\psi(\frac{1}{2}(\omega_{2\lambda}(1,0) + \omega_{2\lambda}(0,1))) - \phi(\omega_{\lambda}(1,0),\omega_{\lambda}(0,1)) = \psi(\frac{1}{2}(\frac{1}{2\lambda} + \frac{1}{2\lambda})) - \phi(\frac{1}{\lambda},0)$$

$$= \psi(\frac{1}{2\lambda}) = \frac{1}{4\lambda^{2}}.$$

So, it is clear that in each case all conditions of Theorem 3.4 satisfy, but, $x_0 = 1 \not\preceq F(1,0)$, $y_0 = 0 \succeq F(0,1)$. Thus, in this case coupled fixed point is not possible.

Hence, (0,0) and (0,1) are two coupled fixed points of weakly C-contractive mapping F.

Theorem 3.4 is still valid, if we drop the continuity of F by replacing it with the alternative conditions as discussed in following theorem.

Theorem 3.7. Suppose that X_{ω} , F, ψ , ϕ are as in Theorem 3.4 except the continuity of F. Suppose that for a non-decreasing sequence $\{x_n\}$ in X_{ω} with $x_n \to x$, we have $x_n \preceq x$ for all $n \in \mathbb{N}$ and for a non-increasing $\{y_n\}$ in X_{ω} with $y_n \to y$, we have $y_n \succeq y$ for all $n \in \mathbb{N}$. If there exists $(x_0, y_0) \in X_{\omega} \times X_{\omega}$ such that $x_0 \preceq F(x_0, y_0)$ and $y_0 \succeq F(y_0, x_0)$, then F has a coupled fixed point.

Proof. As similar to the proof of Theorem 3.4, we have $\{x_n\}$, a non-decreasing sequence in X_{ω} which converges to $x \in X_{\omega}$, and $\{y_n\}$ a non-increasing sequence in X_{ω} which converges to $y \in X_{\omega}$. By hypotheses, we have $x_n \leq x$ for all $n \in \mathbb{N}$ and $y_n \succeq y$ for all $n \in \mathbb{N}$. Therefore,

$$\psi(\omega_{\lambda}(x_{n+1}, F(x, y))) = \psi(\omega_{\lambda}(F(x_n, y_n), F(x, y))$$

$$\leq \psi(\frac{1}{2}(\omega_{2\lambda}(x_n, x) + \omega_{2\lambda}(y_n, y)))$$

$$-\phi(\omega_{\lambda}(x_n, x), \omega_{\lambda}(y_n, y)). \tag{11}$$

Letting $n \to \infty$, we get $\psi(\omega_{\lambda}(x, F(x, y))) = 0$ and hence x = F(x, y). Similarly we can show that y = F(x, y). Thus (x, y) is a coupled fixed point of F.

Now we shall prove the existence and uniqueness theorem of a coupled fixed point. If (X_{ω}, \leq) is a partially ordered set, we endow the product $X_{\omega} \times X_{\omega}$ with the following partial order:

for
$$(x, y), (u, v) \in X_{\omega} \times X_{\omega}, (x, y) \leq (u, v) \Leftrightarrow x \succeq u, y \leq v$$
.

Theorem 3.8. In addition to the hypothesis of Theorem 3.4, suppose that for every (x, y), (z, t) in $X_{\omega} \times X_{\omega}$ there exists $(u, v) \in X_{\omega} \times X_{\omega}$ that is comparable to

(x,y) and (z,t), then F has a unique coupled fixed point.

Proof. From Theorem 3.4, the set of coupled fixed points of F is non-empty. Suppose that (x, y) and (z, t) are two coupled fixed points of F, that is F(x, y) = x, F(y, x) = y, F(z, t) = z and F(t, z) = t. We will prove that

$$x = z$$
 and $y = t$.

By assumption, there exists $(u, v) \in X_{\omega} \times X_{\omega}$ such that (F(u, v), F(v, u)) is comparable with (F(x, y), F(y, x)) and (F(z, t), F(t, z)). Put $u_0 = u$ and $v_0 = v$ and choose $u_1, v_1 \in X_{\omega}$ so that $u_1 = F(u_0, v_0)$ and $v_1 = F(v_0, u_0)$. As done in Theorem 3.4, define sequences $\{u_n\}, \{v_n\}$ with

$$u_{n+1} = F(u_n, v_n)$$
 and $v_{n+1} = F(v_n, u_n)$ for all n.

Now, set $x_0 = x, y_0 = y, z_0 = z$ and $t_0 = t$, in a similar way, define the sequences $\{x_n\}, \{y_n\}$ and $\{z_n\}, \{t_n\}$. Then it is easy to show that

$$x_n \to F(x,y), y_n \to F(y,x) \text{ and } z_n \to F(z,t), t_n \to F(t,z) \text{ as } n \to \infty.$$

Since

$$(F(x,y),F(y,x))=(x_1,y_1)=(x,y)$$
 and $(F(u,v),F(v,u))=(u_1,v_1)$

are comparable, then $x \succeq u$ and $y \preceq v$, or vice versa. it is easy to show that, (x, y) and (u_n, v_n) are comparable for all $n \geq 1$, that is $x \succeq u_n$ and $y \preceq v_n$, or vice versa. Thus from

$$\psi(\omega_{\lambda}(x, u_{n+1})) = \psi(\omega_{\lambda}(F(x, y)), F(u_n, v_n))
\leq \psi(\frac{1}{2}(\omega_{2\lambda}((x, u_n) + \omega_{2\lambda}(y, v_n))) - \phi(\omega_{\lambda}(x, u_n), \omega_{\lambda}(y, v_n))$$
(12)

Similarly,

$$\psi(\omega_{\lambda}(y, v_{n+1})) = \psi(\omega_{\lambda}((F(y, x), F(v_n, u_n)))
\leq \psi(\frac{1}{2}(\omega_{2\lambda}((y, v_n) + \omega_{2\lambda}(x, u_n))) - \phi(\omega_{\lambda}((y, v_n), \omega_{\lambda}(x, u_n)))$$
(13)

Since ψ is a non-decreasing function. By (12) and (13), we have

$$\psi(\max(\omega_{\lambda}(x, u_{n+1}), \omega_{\lambda}(y, v_{n+1}))) = \max(\psi(\omega_{\lambda}(x, u_{n+1}), \psi\omega_{\lambda}(y, v_{n+1})),)$$

$$\leq \psi(\max(\omega_{2\lambda}(x, u_n)), \omega_{2\lambda}(y, v_n))$$

$$- \min(\phi(\omega_{\lambda}(x, u_n), \omega_{\lambda}(y, v_n), \phi(\omega_{\lambda}(y, v_n), \omega_{\lambda}(x, u_n)))$$

$$\leq \psi(\max(\omega_{\lambda}(x, x) + \omega_{\lambda}(x, u_n)), (\omega_{\lambda}(y, y) + \omega_{\lambda}(y, v_n))$$

$$- \min(\phi(\omega_{\lambda}(x, u_n), \omega_{\lambda}(y, v_n))), \phi(\omega_{\lambda}(y, v_n), \omega_{\lambda}(x, u_n)))$$

$$= \psi(\max(\omega_{\lambda}(x, u_n), \omega_{\lambda}(y, v_n))$$

$$- \min(\phi(\omega_{\lambda}(x, u_n), \omega_{\lambda}(y, v_n))), \phi(\omega_{\lambda}(y, v_n), \omega_{\lambda}(x, u_n))).$$

Since $\phi(x,y) \geq 0$ for all $x,y \in X_{\omega}$ and ψ is a non-decreasing function, we conclude that $\psi(\max(\omega_{\lambda}(x,u_{n+1}),\omega_{\lambda}(y,v_{n+1}))$ is a non-decreasing sequence. Thus there is $\alpha \geq 0$ such that

$$\lim_{n\to\infty} \max(\omega_{\lambda}(x, u_{n+1}), \omega_{\lambda}(y, v_{n+1})) = \alpha.$$

Letting $n \to \infty$ in (13), we get

$$\psi(r) = \psi(r) - \lim_{n \to \infty} \min(\phi(\omega_{\lambda}(x, u_n), \omega_{\lambda}(y, y_n)), \phi(\omega_{\lambda}(y, y_n), \omega_{\lambda}(x, u_n))).$$
 (14)

Thus,

$$\lim_{n\to\infty} \min(\phi(\omega_{\lambda}(x,u_n),\omega_{\lambda}(y,v_n))) = 0$$

or

$$\lim_{n\to\infty} \phi(\omega_{\lambda}(y,v_n),\omega_{\lambda}(x,u_n))) = 0.$$

In both the cases, we get

$$\lim_{n \to \infty} \phi(\omega_{\lambda}(x, u_n)) = \lim_{n \to \infty} \phi(\omega_{\lambda}(y, v_n)) = 0.$$
 (15)

Hence $\alpha = 0$ for each $\lambda > 0$ and for all $n \in \mathbb{N}$. Similarly, we show that

$$\lim_{n \to \infty} \phi(\omega_{\lambda}(z, u_n)) = \lim_{n \to \infty} \phi(\omega_{\lambda}(t, v_n)) = 0.$$
 (16)

From (16), (17) and by the uniqueness of the limit, we have x = z and y = t. Hence (x, y) is the unique coupled fixed point of F.

Remark 3.9. Taking $\psi = I_{[0,\infty]}$ [the identity function] in Theorem 3.4 and Theorem 3.7, we get the following.

Corollary 3.10. Let (X_{ω}, \preceq) be a partially ordered set and suppose that there exists a metric modular ω_{λ} on X_{ω} such that $(X_{\omega}, \omega_{\lambda})$ is a complete modular metric space. Let $F: X_{\omega} \times X_{\omega} \to X_{\omega}$ be a weakly C- contractive mapping having mixed monotone property on X_{ω} . Assume that for $x, y, u, v \in X_{\omega}$, $x \succeq u$ and $y \preceq v$ for all $\lambda > 0$ such that

$$\omega_{\lambda}(F(x,y),F(u,v)) \le \frac{1}{2}(\omega_{2\lambda}(x,u) + \omega_{2\lambda}(y,v)) - \phi(\omega_{\lambda}(x,u),\omega_{\lambda}(y,v)), \tag{17}$$

where $\phi: [0, \infty) \times [0, \infty) \to [0, \infty)$ is a continuous mapping such that $\phi(x, y) = 0$ if and only if x = y. Suppose that there exists $(x_0, y_0) \in X_\omega \times X_\omega$ such that $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$ and either

- (1) F is continuous or
- (2) X_{ω} has the following property:
- (a) if a non-decreasing sequence $\{x_n\} \to x$, then $x_n \leq x$ for all $n \in \mathbb{N}$,
- (b) if a non-increasing sequence $\{y_n\} \to y$, then $y_n \leq y$ for all $n \in \mathbb{N}$.

Then F has a coupled fixed point.

Remark 3.11. Taking $\phi(a,b) = (\frac{1-k}{2})(a+b)$ and using the properties of modular metric space in corollary 3.10, we get the following result.

Corollary 3.12. Let ω be a metric modular on X. Let X_{ω} be a ω - complete partially ordered modular metric space induced by ω . Let $F: X_{\omega} \times X_{\omega} \to X_{\omega}$ be a continuous mapping having the mixed monotone property on X_{ω} . Assume that for all $x, y, u, v \in X_{\omega}$, $x \succeq u$ and $y \preceq v$ such that

$$\omega_{\lambda}(F(x,y),F(u,v)) \le \frac{k}{2} \left(\omega_{\lambda}(x,u) + \omega_{\lambda}(y,v)\right). \tag{18}$$

Suppose that there exists $(x_0, y_0) \in X_\omega \times X_\omega$ such that $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$ and either

- (1) F is continuous or
- (2) X_{ω} has the following property:
- (a) if a non-decreasing sequence $\{x_n\} \to x$, then $x_n \leq x$ for all $n \in \mathbb{N}$,
- (b) if a non-increasing sequence $\{y_n\} \to y$, then $y_n \leq y$ for all $n \in \mathbb{N}$.

Then F has a coupled fixed point.

4. Conclusion

It is concluded that the obtained results improve, generalize and enrich various recent coupled fixed point theorems in the framework of C-contraction in partially ordered modular metric spaces. Particularly, Our results generalize the results of Bhaskar and Lakshmikantham [5], Hajani et al. [15] and Shatanawi [29]. The theoretical result is accompanied by applied examples.

Acknowledgements

The authors are grateful to the editor-in-chief and the referees for their accurate reading and helpful suggestions to improve the quality of the paper.

References

- [1] Alber Y. I. and Guerre-Delabriere S., Principles of weakly contractive maps in Hilbert spaces. In: Gohberg I., Lyubich Y.(eds.), New results in operator theory, Advances and Appl., 98, (1997), 7-22.
- [2] Ansari A. H., Sangurlu M., and Turkoglu D., Coupled fixed point theorems for mixed G-monotone mapplings in partially metric spaces via new functions, Gazi University Journal of Science, 29(1), (2016), 149-158.
- [3] Aydi H., Damjanovic B., Samet B., and Shatanawi W., Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Modelling, doi:10.1016/j.mcm.2011.05.059., (2011).
- [4] Banach S., Sur les opérations dans les ensembles abstraits et leus applications auxéquations intégrales, Publié Dans Fund Math., 3, (1922), 133-181.
- [5] Bhaskar T. G. and Lakshmikantham V., Fixed point theorems in partially ordered metric spaces and applications, Numerical Analysis, 65, (2006), 1379-1393.
- [6] Chatterjea S. K., Fixed point theorems, C.R. Acad. Bulgare Sci., 25, (1972), 727-730.
- [7] Chifu C. and Petrusel G., New results on coupled fixed point theory in metric spaces endowed with a directed graph, Fixed Point Theory and Applications, 2014(151), (2014).
- [8] Chistyakov V. V., Modular metric spaces generated by F-modulars, Folia Mathematica, 15(1), (2008), 3-24.
- [9] Chistyakov V. V., Modular metric spaces I basic concepts, Nonlinear Analysis: Theory, Methods and Applications, 72, (2010), 1-14.
- [10] Chistyakov V. V., Fixed point of modular contractive maps, Doklady Mathematics, 86(1), (2012), 515-518.
- [11] Chistyakov V. V., A fixed point for contractions in modular metric spaces, Math. FA, 5, (2011).
- [12] Choudhury B. S., Unique fixed point theorem for weak C-contractive mappings, Kathmandu University Journal of Science, Engineering and Technology, 5(1), (2009), 6-13.

- [13] Gordji M. E., Akbartabar E., Cho Y. J., and Ramezani M., Coupled common fixed point theorems for mixed weakly monotone mappings in partially ordered metric spaces, Fixed point Theory and Applications, 2012, (2012).
- [14] Harandi A. A., Coupled and tripled fixed point theory in partially ordered metric spaces with application to initial value problem, Mathematical and Computer Modelling, 57, (2013), 2343-2348.
- [15] Harjani J. and Kishin S., Fixed point theorems for weakly contractive mappings in partially ordered sets., Nonlinear Analysis: Theory, Methods and Applications, 71, (2009), 3403-3410.
- [16] Kadelbyrg Z. and Pavlovié M., Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Computers and Mathematics with Applications, 59, (2010), 3148-3159.
- [17] Khan M., Swaleh M., and Sessa S., Fixed point theorems by altering distance between the points, Bulletin of Australian Mathematical Society, 30, (1984), 1-9.
- [18] Lakshmikantham V. and Ćirić L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis Theory Methods Applications, 70(12), (2009), 4341-4349.
- [19] Mongkolkeha C., Sintunavarat W., and Kumam P., A fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory Applications, 93, (2011).
- [20] Musielak J. and Orlicz W., On modular spaces, Studia Mathematica, 18, (1959), 49-65.
- [21] Mutlu A., Özkan K., and Gürdal U., Coupled fixed point theorem in partially ordered modular metric spaces and its an application, Computational Analysis and Applications, 25(2), (2018), 207-216.
- [22] Mutlu A., Özkan K., and Gürdal U., A new fixed point theorem in modular metric spaces, International Journal of Analysis and Applications, 16(4), (2018), 472-483.
- [23] Mutlu A., Yolcu N., and Mutlu B., Coupled fixed point theorem for mixed monotone mappings on partially ordered dislocated Quasi metric spaces, Global Journal of Mathematics, 1(1), (2015), 12-17.

- [24] Nakano H., Modulared semi-ordered linear spaces, Mathematical Book Series, 1, (1950).
- [25] Nashine H. K., Samet B., and Vetro C., Coupled coincidence points for compatible mappings satisfying mixed monotone property, Journal of Nonlinear Science and Applications, 5, (2012), 104-114.
- [26] Özkan K., and Gürdal U., and Mutlu A., Some fixed point theorems on compact modular metric spaces, National Academy of Sciences of Azeerbaijan, 46(2), (2020), 180-188.
- [27] Samet B., Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal., 72, (2010), 4508-4517.
- [28] Shatanawi W., Some common coupled fixed point results in cone metric spaces, Int. J. Math. Anal., 4, (2010), 2381-2388.
- [29] Shatanawi W., Fixed point theorems for nonlinear weakly C-contractive mappings in metric spaces, Mathematical and Computer Modelling, 54, (2011), 2816-2826.
- [30] Turkoglu D. and Sangurlu M., Coupled fixed point theorems for mixed g-monotone mapplings in partially ordered metric spaces, Fixed Point Theory and Applications, 2013, (2013).
- [31] Zhao J., Zhao Q., Jin B., and Zhong L., Fixed point results for weakly C-contraction mapping in modular metric spaces, Open Access Library Journal, 5(1), (2018), 1-9.